Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 13: 833418, 2022.
Article in English | MEDLINE | ID: covidwho-1771038

ABSTRACT

As TLR2 agonists, several lipopeptides had been proved to be candidate vaccine adjuvants. In our previous study, lipopeptides mimicking N-terminal structures of the bacterial lipoproteins were also able to promote antigen-specific immune response. However, the structure-activity relationship of lipopeptides as TLR2 agonists is still unclear. Here, 23 synthetic lipopeptides with the same lipid moiety but different peptide sequences were synthesized, and their TLR2 activities in vitro and mucosal adjuvant effects to OVA were evaluated. LP1-14, LP1-30, LP1-34 and LP2-2 exhibited significantly lower cytotoxicity and stronger TLR2 activity compared with Pam2CSK4, the latter being one of the most potent TLR2 agonists. LP1-34 and LP2-2 assisted OVA to induce more profound specific IgG in sera or sIgA in BALF than Pam2CSK4. Furthermore, the possibility of LP1-34, LP2-2 and Pam2CSK4 as the mucosal adjuvant for the SARS-CoV-2 recombinant RBD (rRBD) was investigated. Intranasally immunized with rRBD plus either the novel lipopeptide or Pam2CSK4 significantly increased the levels of specific serum and respiratory mucosal IgG and IgA, while rRBD alone failed to induce specific immune response due to its low immunogenicity. The novel lipopeptides, especially LP2-2, significantly increased levels of rRBD-induced SARS-CoV-2 neutralizing antibody in sera, BALF and nasal wash. Finally, Support vector machine (SVM) results suggested that charged residues in lipopeptides might be beneficial to the agonist activity, while lipophilic residues might adversely affect the agonistic activity. Figuring out the relationship between peptide sequence in the lipopeptide and its TLR2 activity may lay the foundation for the rational design of novel lipopeptide adjuvant for COVID-19 vaccine.


Subject(s)
COVID-19 , Lipopeptides , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipopeptides/pharmacology , SARS-CoV-2 , Toll-Like Receptor 2
2.
Stroke Vasc Neurol ; 5(3): 279-284, 2020 09.
Article in English | MEDLINE | ID: covidwho-1318202

ABSTRACT

BACKGROUND AND PURPOSE: COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Apart from respiratory complications, acute cerebrovascular disease (CVD) has been observed in some patients with COVID-19. Therefore, we described the clinical characteristics, laboratory features, treatment and outcomes of CVD complicating SARS-CoV-2 infection. MATERIALS AND METHODS: Demographic and clinical characteristics, laboratory findings, treatments and clinical outcomes were collected and analysed. Clinical characteristics and laboratory findings of patients with COVID-19 with or without new-onset CVD were compared. RESULTS: Of 219 patients with COVID-19, 10 (4.6%) developed acute ischaemic stroke and 1 (0.5%) had intracerebral haemorrhage. COVID-19 with new onset of CVD were significantly older (75.7±10.8 years vs 52.1±15.3 years, p<0.001), more likely to present with severe COVID-19 (81.8% vs 39.9%, p<0.01) and were more likely to have cardiovascular risk factors, including hypertension, diabetes and medical history of CVD (all p<0.05). In addition, they were more likely to have increased inflammatory response and hypercoagulable state as reflected in C reactive protein (51.1 (1.3-127.9) vs 12.1 (0.1-212.0) mg/L, p<0.05) and D-dimer (6.9 (0.3-20.0) vs 0.5 (0.1-20.0) mg/L, p<0.001). Of 10 patients with ischemic stroke; 6 received antiplatelet treatment with aspirin or clopidogrel; and 3 of them died. The other four patients received anticoagulant treatment with enoxaparin and 2 of them died. As of 24 March 2020, six patients with CVD died (54.5%). CONCLUSION: Acute CVD is not uncommon in COVID-19. Our findings suggest that older patients with risk factors are more likely to develop CVD. The development of CVD is an important negative prognostic factor which requires further study to identify optimal management strategy to combat the COVID-19 outbreak.


Subject(s)
Betacoronavirus/pathogenicity , Cerebrovascular Disorders/virology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Acute Disease , Aged , Aged, 80 and over , Anticoagulants/therapeutic use , COVID-19 , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/mortality , China , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Pandemics , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Treatment Outcome
3.
Stroke Vasc Neurol ; 5(2): 146-151, 2020 06.
Article in English | MEDLINE | ID: covidwho-1318197

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a pandemic disease globally. Although COVID-19 directly invades lungs, it also involves the nervous system. Therefore, patients with nervous system involvement as the presenting symptoms in the early stage of infection may easily be misdiagnosed and their treatment delayed. They become silent contagious sources or 'virus spreaders'. In order to help neurologists to better understand the occurrence, development and prognosis, we have developed this consensus of prevention and management of COVID-19. It can also assist other healthcare providers to be familiar with and recognise COVID-19 in their evaluation of patients in the clinic and hospital environment.


Subject(s)
Betacoronavirus/pathogenicity , Central Nervous System Infections/therapy , Central Nervous System/virology , Clinical Laboratory Techniques/standards , Coronavirus Infections/therapy , Neurologists/standards , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Testing , Central Nervous System/physiopathology , Central Nervous System Infections/diagnosis , Central Nervous System Infections/physiopathology , Central Nervous System Infections/virology , Consensus , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Early Diagnosis , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , SARS-CoV-2
5.
Curr Med Sci ; 40(3): 480-485, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-437068

ABSTRACT

The efficient transmission of severe acute respiratory syndrome-2 coronavirus (SARS-CoV-2) from patients to health care workers or family members has been a worrisome and prominent feature of the ongoing outbreak. On the basis of clinical practice and in-vitro studies, we postulated that post-exposure prophylaxis (PEP) using Arbidol is associated with decreased infection among individuals exposed to confirmed cases of COVID-19 infection. We conducted a retrospective cohort study on family members and health care workers who were exposed to patients confirmed to have SARS-CoV-2 infection by real-time RT-PCR and chest computed tomography (CT) from January 1 to January 16, 2020. The last follow-up date was Feb. 26, 2020. The emergence of fever and/or respiratory symptoms after exposure to the primary case was collected. The correlations between post-exposure prophylaxis and infection in household contacts and health care workers were respectively analyzed. A total of 66 members in 27 families and 124 health care workers had evidence of close exposure to patients with confirmed COVID-19. The Cox regression based on the data of the family members and health care workers with Arbidol or not showed that Arbidol PEP was a protective factor against the development of COVID-19 (HR 0.025, 95% CI 0.003-0.209, P=0.0006 for family members and HR 0.056, 95% CI 0.005-0.662, P=0.0221 for health care workers). Our findings suggest Arbidol could reduce the infection risk of the novel coronavirus in hospital and family settings. This treatment should be promoted for PEP use and should be the subject of further investigation.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Indoles/administration & dosage , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Pneumonia, Viral/transmission , Adult , Aged , Aged, 80 and over , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/diagnostic imaging , Family , Female , Health Personnel , Humans , Indoles/pharmacology , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Post-Exposure Prophylaxis , Regression Analysis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment Outcome
6.
Stroke Vasc Neurol ; 5(2): 177-179, 2020 06.
Article in English | MEDLINE | ID: covidwho-195464

ABSTRACT

Coronavirus disease-2019 (COVID-19) has become a global pandemic. COVID-19 runs its course in two phases, the initial incubation phase and later clinical symptomatic phase. Patients in the initial incubation phase often have insidious clinical symptoms, but they are still highly contagious. At the later clinical symptomatic phase, the immune system is fully activated and the disease may enter the severe infection stage in this phase. Although many patients are known for their respiratory symptoms, they had neurological symptoms in their first 1-2 days of clinical symptomatic phase, and ischaemic stroke occurred 2 weeks after the onset of the clinical symptomatic phase. The key is to prevent a patient from progressing to this severe infection from mild infection. We are sharing our experience on prevention and management of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Central Nervous System Infections/therapy , Central Nervous System/virology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Testing , Central Nervous System/physiopathology , Central Nervous System Infections/diagnosis , Central Nervous System Infections/physiopathology , Central Nervous System Infections/virology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Disease Progression , Early Diagnosis , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , SARS-CoV-2 , Time Factors
7.
JAMA Neurol ; 77(6): 683-690, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-46613

ABSTRACT

Importance: The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations. Objective: To study the neurologic manifestations of patients with COVID-19. Design, Setting, and Participants: This is a retrospective, observational case series. Data were collected from January 16, 2020, to February 19, 2020, at 3 designated special care centers for COVID-19 (Main District, West Branch, and Tumor Center) of the Union Hospital of Huazhong University of Science and Technology in Wuhan, China. The study included 214 consecutive hospitalized patients with laboratory-confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 infection. Main Outcomes and Measures: Clinical data were extracted from electronic medical records, and data of all neurologic symptoms were checked by 2 trained neurologists. Neurologic manifestations fell into 3 categories: central nervous system manifestations (dizziness, headache, impaired consciousness, acute cerebrovascular disease, ataxia, and seizure), peripheral nervous system manifestations (taste impairment, smell impairment, vision impairment, and nerve pain), and skeletal muscular injury manifestations. Results: Of 214 patients (mean [SD] age, 52.7 [15.5] years; 87 men [40.7%]) with COVID-19, 126 patients (58.9%) had nonsevere infection and 88 patients (41.1%) had severe infection according to their respiratory status. Overall, 78 patients (36.4%) had neurologic manifestations. Compared with patients with nonsevere infection, patients with severe infection were older, had more underlying disorders, especially hypertension, and showed fewer typical symptoms of COVID-19, such as fever and cough. Patients with more severe infection had neurologic manifestations, such as acute cerebrovascular diseases (5 [5.7%] vs 1 [0.8%]), impaired consciousness (13 [14.8%] vs 3 [2.4%]), and skeletal muscle injury (17 [19.3%] vs 6 [4.8%]). Conclusions and Relevance: Patients with COVID-19 commonly have neurologic manifestations. During the epidemic period of COVID-19, when seeing patients with neurologic manifestations, clinicians should suspect severe acute respiratory syndrome coronavirus 2 infection as a differential diagnosis to avoid delayed diagnosis or misdiagnosis and lose the chance to treat and prevent further transmission.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Hospitalization/trends , Nervous System Diseases/diagnosis , Nervous System Diseases/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adult , Aged , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Female , Humans , Male , Middle Aged , Nervous System Diseases/blood , Pandemics , Pneumonia, Viral/blood , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL